Daily Archives: March 1, 2010

How F1 cars have evolved from last year

As you all should remember, 2009 was the year of massive technical regulation changes, which hugely shoock up the order of the grid. Brawn GP were the best to learn from the regulations, which required a perfect aerodynamic balance. Since then, many teams have caught up, and the 2010 testing season has shown us that technical innovation  has moved on from last year. So, let’s have a look at what the teams have been inventing.

Accomodating larger fuel tanks

Wheelbase and fuel tank capacity changes

Wheelbase and fuel tank capacity changes

The main change to the 2010 regulations was that refuelling is banned. This meant that the fuel tank capacity has increased (2) from 120 to about 235 litres. This huge increase in size ensured that the teams would have to deal with two problems: 1) Adjusting the car’s balance and 2) Moving the mechanical components to facilitate this.

The inevitable solution was to increase the cars’ wheelbases. However, it was critical that the increase was not too big, in order to save handling, and thereby tyre wear. Through multiple innovations which we will now analyse, the wheelbase was only increased by around 15cm. This means that the extra 160kg of fuel has less effect on the weight distrubution of the car. However, the increased tank size meant that mechanical components had to be moved. It is believed that some teams have moved the oil tank  behind the fuel tank (since 1998 it has been ahead of it), to allow space to be saved, and therefore meaning minimal increase in the wheelbase.

Shorter gearboxes (5) save unnecessary wheelbase extensions

Shorter gearboxes (5) save unnecessary wheelbase extensions

Another innovation was to reduce the size of the gearbox, again to reduce the need of moving the wheelbase. This was combined with the fact that all of the other mechanicals were moved slightly more than the wheelbase adjustment. This space deficit was countered with a smaller suspension system (see picture above). Only Red Bull seem not to have gone down this route, instead choosing to keep its pullrod rear suspension, which moves further down the car.

More space for the double-decker diffuser

Ferrari's engine mounting allows more space for the diffuser

Ferrari's engine mounting allows more space for the diffuser

Like it or not, but the double-decker diffusers meant that the teams were looking to extract maximum downforce in the rear area. The front section was dealt with by the front wing, so the diffuser was the best area to work on. An interesting solution introduced by Ferrari replicated that on the very intelligent design of the Arrows A2, from 1970. Their F10 engine was mounted at a 3.5 degree angle (1). This meant that the exhaust pipes are located further forward than usual, which allowed for more space at the back for the diffuser. This solution was first done by the A2 in 1970.

All of that means that there is more space to play with in the back of the car. The concept of the double-decker diffuser was that there was a slot in the underside of the car, which fed a much larger diffuser on top. The extra space generated by the exhausts being moved forward means that the diffuser will be larger, meaning more downforce.

Higher gearbox positioning allows for more diffuser space

Higher gearbox positioning allows for more diffuser space

A more simple solution from Red Bull here. Adrian Newey’s idea was to elevate the gearbox instead of shortening it, which had the same effect without difficulties with the shorter gearbox afterwards. The yellow area in the photo shows the difference made by a simple adjustment. This explains why they retained their pull-rod suspension (see 3rd paragraph on larger fuel tanks) in stead of reverting to the traditional push-rod system. Since the pick-up points of the pull-rod suspension are now lower, it means that space for the diffuser is increased. These are two completely different solutions to the same objective: Make space at the back for the diffuser. This is why Formula 1 is such a great place to show technical innovation.

Rear aerodynamic airflow

McLaren's rear aerodynamic layout, which aims air at the rear wing and diffuser

McLaren's rear aerodynamic layout, which aims air at the rear wing and diffuser

As well as the diffuser, airflow management was important on the outside of the car. McLaren’s MP4-25 is the best example of this. First of all, completely the opposite of Ferrari, their exhausts have been moved further back (red arrow). The second part of this solution is to use the airflow of the airbox exit to cool the air from the gearbox radiator (blue arrow). The smaller red arrows show how these two airflow systems go over the diffuser, and the lower part of the rear wing, at certain speeds.

At lower speeds, this air goes through the diffuser, to generarte low-speed grip. When the car becomes faster, and the front and rear wings become more powerful, this airflow then moves to the lower part of the rear wing (black rear wing section). This creates a certain amount of grip without the original drag of the diffuser. This solution shows how the car’s aerodynamic system can change between grip and speed as it gets faster.

Frontal aerodynamic airflow

McLaren's front nosecone splitter, which separates airflow

McLaren's front nosecone splitter, which separates airflow

Again, McLaren’s aero setup is noteworthy here, as it incorporates a solution used by Williams last year. The nosecone splitter (black arrow) changes the airflow passing over and under the front of the car, and thereby the entire aerodynamic layout of the car.

The Sauber C29's endplate system

The Sauber C29's endplate system

As well as this, the cars’ endplates are getting more and more complicated, as the teams look for more methods to divert the air away from the front tyres. Last year, it was more difficult, as the tyres were wider, and the endplates were therefore creating more drag as they pushed more air sideways in the car. This year, because the front tyres are narrower, the endplates now feature more sections to create as little drag as possible, while still ensuring that the tyres weren’t making turbulent air by mixing with the car’s airflow.

While most teams opted to push the air outside the front tyres, Sauber went for a mixture of two solutions: To move the air around as well as over the tyres. The inner part of the endplates is traditional in creating as little drag as possible while diverting airflow. However, the interesting section is the outer part, which moves air over the tyres. As well as having a dual layout system, it means that slightly more downforce is generated by the cars at speed.

So, as we can see, there have been plenty of new technical innovations for the 2010 season, and we haven’t even started yet! Hopefully, across the season, we will see some morenew inventions, which I will feature on the blog in several round-ups across the year.

Fake Red Bull exhausts spotted

The Red Bull RB6 with the fake exhaust below the rear wing

The Red Bull RB6 with the fake exhaust below the rear wing

The real exhausts, to the left of the Bridgestone sticker

The real exhausts, below the green pullrod

It seems as if Red Bull has been attempting to decieve the rest of the paddock, as it emerged today that it was using stickers to fake the location of its exhausts.

Over the last few weeks of testing, you may have seen the pictures of the RB6 with the exhausts apparently at the end of the engine cover, just below the rear wing. However, new pictures have revealed that these were just stickers, to cover the new technical innovation of their lower exhausts.

Their exhausts are actually at the very undertray of the car, just before the rear suspension. In the second picture, you can just about see it, to the left of the Bridgestone logo and below the painted green (for aerodynamic purposes) suspension rod. Clearly, this will have a balance improvement, with a slightly lower centre of gravity. Also, the amount of disturbed air on the pullrod suspension will be reduced, which is an aerodynamic benefit.

More than that, it would also bring in the idea of an exhaust driven diffuser. As I have already talked about, the RB6 uses a different strategy to enlarge their diffuser, by heightening their gearbox and retaining the pull-rod suspension. With an exhaust driven diffuser, the high speed gases can increase the power of the diffuser. When exhaust driven diffusers were used in the 1990’s, one main complaint was that the increase in downforce in the diffuser was proportional to the throttle position. Now that the double decker diffuser is higher up (slot feeding diffuser on top, hence increased height), the sensitivity of the diffuser is decreased.

I can’t fully prove this theory, as Red Bull will never talk about their innovation. However, if it is what I think it is, this new creation could be nearly as important as the horned nose from Red Bull last year.

USF1 offers compensation to miss season

USF1

USF1

The American racing channel Speed TV is reporting that USF1 gave offered the FIA a 7-digit compensation figure to miss the entire 2010 season.

The Charlotte outfit are not going to be able to make it onto the grid, and they are turning desperate. Speed TV are  calling it a “substantial 7-figure surety bond as proof of their intentions to race next year”. This money is being offered by Ken Anderson and Chad Hurley, who is the head of YouTube and a major partner of the team.

Update: I’ve removed this paragraph, simply because I got this part completely wrong. I had written this piece before the news came out that it was actually a surety bond. Which means that all my ramblings about bribes were complete rubbish, sorry about that, I know very little about surety bonds and the like.

Follow

Get every new post delivered to your Inbox.

Join 55 other followers